Journal of Organometallic Chemistry, 365 (1989) 403-412 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09524

Synthesen von Aryl-Platin-Verbindungen mit großflächigen Aryl-Liganden

Claus Weisemann^a, Günther Schmidtberg^b und Hans-Albert Brune^{*a}

Lehrstuhl für Organische Chemie I^a und Sektion Massenspektrometrie^b der Universität Ulm, Oberer Eselsberg, D-7900 Ulm / Donau (B.R.D.)

(Eingegangen den 30. September 1988)

Abstract

The syntheses of the organoplatinum compounds, $(1,2,5,6-\eta^4$ -cycloocta-1,5diene)platinum(II) (5b, c), bis(aryl)(2,3,5,6-\eta^4-bicyclo[2.2.1]hepta-2,5-diene)platinum(II) (8a-d), cis-bis(aryl)bis(triphenylphosphane)platinum(II) (9a-d), and chloro(aryl)(2,3,5,6-\eta^4-bicyclo[2.2.1]hepta-1,5-diene)platinum(II) (10a), with the large area ligands 9-anthracenyl (a), 9-phenanthrenyl (b), 5-acenaphthenyl (c), and 1-pyrenyl (d) by use of the organotin method with aryltri(n-butyl)stannanes (3a-d) are described.

Zusammenfassung

Die Synthesen folgender platin-organischer Verbindungen mit den großflächigen Aryl-Liganden 9-Anthracenyl (a), 9-Phenanthrenyl (b), 5-Acenaphthenyl (c) und 1-Pyrenyl (d) auf dem zinn-organischen Weg über die Aryl-tri(n-butyl)stannane (**3a-d**) werden beschrieben: Bis(aryl)(1,2,5,6- η^4 -cycloocta-1,5-dien)platin(II) (**5b**, c), Bis(aryl)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(II) (**8a-d**), cis-Bis(aryl)bis(triphenylphosphan)platin(II) (**9a-d**) und Chloro(aryl)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(II) (**10a**).

Kürzlich konnten wir nachweisen, daß sich zwei großflächige Aryl-Liganden, wie z. B. das Naphth-1-yl-System, selbst dann an dsp^2 -hybridisiertes (quasi "quadratisch-ebenes") Platin(II) in *cis*-Konfiguration koordinieren können, wenn die über C(1) an das Zentralatom gebundenen Naphthyl-Liganden benachbart zu dieser Koordinationsstelle – also an C(2) – noch zusätzlich relativ voluminöse Substituenten tragen [1]. An diesen Verbindungen konnte – als Konsequenz der Aufhebung der Rotationsfreiheitsgrade um die Kohlenstoff-Platin- σ -Bindungen – die Existenz zeitlich stationärer *E*- und Z-Konformerer nachgewiesen werden. Wir haben uns nun die Frage gestellt, ob solche *cis*-Bis(aryl)platin(II)-Verbindungen auch mit noch größerflächigen Aryl-Liganden darstellbar und existenzfähig sind und berichten in dieser Arbeit über entsprechende Syntheseversuche.

Synthesen

Die Einführung sterisch anspruchsvoller Aryl-Liganden erfordert drastische Reaktionsbedingungen (höhere Temperaturen und lange Reaktionszeiten) und gelingt daher auf dem Weg über die direkte Substitution der Chloro-Liganden an Dichlorobis(ligand)platin(II)-Verbindungen mit Aryllithium oder Arvlmagnesiumbromid nur noch in völlig unzureichenden Ausbeuten oder überhaupt nicht mehr. Mit guten Ausbeuten können solche Aryl-Liganden dagegen durch Reaktion von Aryl-tri(alkyl)stannanen mit Dichloroplatin(II)-Verbindungen an das dsp²-hybridisierte Platin gebunden werden [1,2]. Daher wurden zunächst aus 9-Bromanthracen (1a) und aus Hexamethyl- bzw. Hexa(n-butyl)-distannan und Natrium hergestelltem - Trimethylstannylnatrium bzw. Tri(n-butyl)stannylnatrium 9-Anthracenyl-trimethylstannan (2a) bzw. 9-Anthracenyl-tri(n-butyl)stannan (3a) dargestellt. Hierbei zeigte sich jedoch, daß dieses für die Synthese von Aryl-tri*methy*/stannanen (2) bewährte Verfahren bei der Übertragung auf die Darstellung der Arvl-tri(*n-butyl*)stannane (3) nur sehr geringe und damit unbefriedigende Ausbeuten lieferte. Dagegen konnten Tri(n-butyl)(9-phenanthrenyl)stannan (3b), 5-Acenaphthenyl-tri(n-butyl)stannan (3c) und Tri(n-butyl)(1-pyrenyl)stannan (3d) in guten Ausbeuten auf dem inversen Wege über die Reaktion der Grignard-Verbindungen von 9-Bromphenanthren (1b), 5-Bromacenaphthen (1c) bzw, 1-Brompyren (1d) mit Tri(n-butyl)chlorstannan erhalten werden:

Aus den Umsetzungen von **3b**, **3c** mit Dichloro $(1,2,5,6-\eta^4$ -Cycloocta-1,5dien)platin(II) (**4**) [3] in Methylenchlorid wurden zwar $(1,2,5,6-\eta^4$ -Cycloocta-1,5dien)-bis(9-phenanthrenyl)platin(II) (**5b**) bzw. $(1,2,5,6-\eta^4$ -Cycloocta-1,5-dien)bis(5acenaphthenyl)platin(II) (**5c**) in guten Ausbeuten isoliert:

2 Ar-Sn(n-But)₃ + [Pt(COD)Cl₂] \longrightarrow [Pt(COD)Ar₂] 3b,c 4 5b,c

Bei den nachfolgenden Versuchen, in 5b, 5c den Cyclo-octa-1,5-dien-Liganden durch Triphenylphosphan zu den eigentlich angestrebten Komplexen vom Typ cis-Bis(aryl)bis(triphenylphosphan)platin(II) zu substituieren, verhielten sich 5b, 5c jedoch gegenüber Ligandenaustausch inert. Daher wurden die vom [Pt(COD)Cl₂] (4) ausgehenden Synthesen nicht weitergeführt. Stattdessen wurde anschließend vom $Dichloro(2,3,5,6-n^4-bicyclo[2,2,1]hepta-2,5-dien)platin(II)$ (6) [4] ausgegangen; denn der Bicyclo[2.2.1]hepta-2,5-dien-[Norbornadien-(NBD)] Ligand ist erfahrungsgemäß als Konsequenz der vorgegebenen gewinkelten Anordnung seiner π -Orbitale weniger fest an das Platin gebunden und daher - wohl zusätzlich noch wegen seiner kompakten Struktur – leichter durch andere Liganden austauschbar. Aus der Reaktion von [Pt(NBD)Cl₂] [4] mit überschüssigem 3a-d in Methylenchlorid konnten - ebenfalls in guten Ausbeuten (vgl. Experimentellen Teil) - Bis(9-anthracenyl)- $(2,3,5,6-\eta^4-bicyclo[2,2,1]hepta-2,5-dien)platin(II)$ (7a), Bis(9-phenanthrenyl)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(II) (7b), Bis(5-acenaphthenyl)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(II) (7c) bzw. Bis(1-pyrenyl)(2,3,5,6-η⁴-bicyclo[2.2.1]hepta-2,5-dien)platin(II) (7d) erhalten.

2 Ar-Sn(n-But)₃ + [Pt(NBD)Cl₂]
$$\longrightarrow$$
 [Pt(NBD)Ar₂]
3a-d 6 7a-d

Aus 7a-d entstanden durch Ligandenaustausch mit Triphenylphosphan – unter Erhalt der *cis*-Anordnung der beiden voluminösen Aryl-Liganden – *cis*-Bis(9anthracenyl)bis(triphenylphosphan)platin(II) (8a), *cis*-Bis(9-phenanthrenyl)bis(triphenylphosphan)platin(II) (8b), *cis*-Bis(5-acenaphthenyl)bis(triphenylphosphan)platin(II) (8c) bzw. *cis*-Bis(1-pyrenyl)bis(triphenylphosphan)platin(II) (8d).

$$\begin{bmatrix} \mathsf{Pt}(\mathsf{NBD})\mathsf{Ar}_2 \end{bmatrix} + 2 \ \mathsf{P}(\mathsf{C}_6\mathsf{H}_5)_3 \qquad \mathsf{cis} - \left[\mathsf{Pt}\left[\mathsf{P}(\mathsf{C}_6\mathsf{H}_5)_3\right]_2 \ \mathsf{Ar}_2 \right] \\ 7\mathsf{a}-\mathsf{d} \qquad 8\mathsf{a}-\mathsf{d} \end{bmatrix}$$

Wurden 3a und 6 in äquimolarem Verhältnis unter gleichen Bedingungen umgesetzt, resultierte ein Gemisch aus wenig 7a, unumgesetztem 6 und (9-Anthracenyl)-(chloro)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(II) (9a), aus dem 9a rein isoliert werden konnte.

Ar-Sn(n-C₄H₉)₃ + [Pt(NBD)Cl₂]
$$\longrightarrow$$
 [Pt(NBD)(Ar)Cl]
3a 6 9a

(Die analogen Umsetzungen mit 3b, c, d wurden nicht durchgeführt, erscheinen jedoch ebenfalls realisierbar.)

In cis-Bis(aryl)bis(ligand)platin(II)-Verbindungen orientieren sich die Aryl-Liganden in kristalliner Phase [5-12] und auch in Lösung [1,13-16] senkrecht oder nahezu senkrecht zu derjenigen Ebene, welche durch die vom dsp^2 -hybridisiertem Platin ausgehenden Valenzen definiert ist. Damit sind für **5b**, **5c**, **7b-d** und **8b-d** jeweils *E*, *Z*-Konformere bezüglich der Konformation der Aryl-Liganden an den Platin-Kohlenstoff- σ -Bindungen zu erwarten. Die Existenz solcher *E*, *Z*-Konformerer konnte an **8b-d** ³¹P-NMR-spektroskopisch nachgewiesen werden; für die Verbindungen 5 bzw. 7 fehlt infolge der Komplexität der ¹H-NMR-Spektren der COD bzw. NBD Liganden eine direkte spektroskopische Nachweismöglichkeit. Die Lebensdauern der einzelnen Konformeren sind jedoch bei Raumtemperatur für eine präparative Trennung und Isolierung zu kurz. Auf der Basis früherer Untersuchungen [11,12] liegen alle Verbindungen in den isolierten Kristallen einheitlich in der *E*-Konformation vor.

Experimenteller Teil

Verwendete Geräte und Methoden wie in Lit. 13. Im Folgenden werden nur diejenigen spektroskopischen Daten referiert, die unmittelbar als Grundlagen für Konstitutions- und Konfigurations-Aussagen verwendet wurden: vollständige Angaben – gegebenenfalls Spektrenkopien – können für Vergleichszwecke angefordert werden.

Synthesen

Die Darstellung der zinn-organischen Verbindungen wurde in scharf getrockneten Reaktionsgefäßen unter Argon-Schutzgas in der Schlenk-Technik durchgeführt. Die Stannane 3a-d selbst sowie die aus ihnen synthetisierten platin-organischen Verbindungen sind unter den angewendeten Reaktionsbedingungen luft- und feuchtigkeits-beständig; die Synthesen von 5b, 5c, 7a-d und 8a-d erfordern daher – das ist einer der wesentlichen Vorteile der Methode über die zinn-organischen Verbindungen – keine besonderen Maßnahmen. Die verwendeten absoluten Lösungsmittel wurden nach den bekannten Methoden absolutiert und nach dem Destillieren durch Einleiten von getrocknetem Argon von Sauerstoff befreit.

9-Anthracenvl-trimethylstannan (9-Trimethylstannylanthracen) (2). Eine aus 7.45 g (22.7 mmol) Hexamethyldistannan und 2.10 g (91.3 mmol) Natrium in 70 ml absol. Tetraglyme hergestellte Lösung von Trimethylstannylnatrium wurde unter Rühren bei 0°C zu einer Lösung von 7.00 g (27.2 mmol) 9-Bromanthracen in 60 ml Tetraglyme getropft. Das rotbraune Reaktionsgemisch wurde 3 h bei 0°C weitergerührt und dann auf 150 g Eiswasser gegossen. Die entstandene Suspension wurde mit 50 ml gesättigter wässeriger Ammoniumchlorid-Lösung verdünnt und dann sechsmal mit je 100 ml Petrolether extrahiert. Die vereinigten Extrakte wurden im Rotationsverdampfer auf 200 ml eingeengt; das Konzentrat wurde mit 300 ml Wasser versetzt und anschließend achtmal mit je 50 ml n-Heptan extrahiert. Die vereinigten Heptan-Extrakte wurden über Na₂SO₄ getrocknet und im Rotationsverdampfer vom Lösungsmittel befreit. Der Rückstand wurde in einer Kugelrohr-Apparatur im Vakuum destilliert. Dabei wurden zunächst 4.65 g 4 – nach dem Kapillar-Gaschromatogramm rein - isoliert. Der noch verunreinigte Rest wurde in 20 ml CH₂Cl₂ gelöst und mit 10 ml Methanol versetzt; dann wurde das CH₂Cl₂ im Rotationsverdampfer wieder abgezogen, wobei die Verunreinigungen weitgehend ausfielen und durch Filtration abgetrennt wurden. Aus dem nach Entfernung des Lösungsmittels aus dem Filtrat verbliebenen Rückstand wurden durch Kugelrohrdestillation weitere 1.4 g gaschromatographisch reines 4 isoliert. Ausbeute 5.79 g (62%; lt. [17] 2%); Schmp. 70°C (65-66°C [17]). ¹H-NMR (60 MHz; CDCl₃) $\delta = 0.77$ (s, flankiert von 2 d durch ¹¹⁷Sn, ¹¹⁹Sn; ²J[¹¹⁷Sn,H] = 51 Hz; ²J[¹¹⁹Sn,H] = 56 Hz; Sn(CH₃)₃); 7.30-8.70 (kompl. m; H_{aromat}); gem. Int.-Verh. 8.9/9.1 (ber. 9/9).

IR (KBr; cm⁻¹): 1620, 1520 (aromat. Gerüstschw.); 1445 (δ [CH₃]); 780, 735 (γ [C-H_{aromat}]); 530, 515 (ν_{as} , ν_s [Sn(CH₃)₃]). MS (EI): $M^+ m/e = 342$ (ber. 342 für Hauptisotop ¹²⁰Sn). Analyse: Gef.: C, 59.73; H, 5.27. C₁₇H₁₈Sn (341.04) ber.: C, 59.88; H, 5.28%.

9-Anthracenyl-tri(n-butyl)stannan (9-[Tri(n-butyl)stannyl]anthracen) (3a). 9.46 g (16.3 mmol) Hexa(n-butyl)distannan wurden bei Raumtemp. 30 h in 160 ml Tetraglyme mit 2.01 g (87.4 mmol) fein zerkleinertem Natrium intensiv gerührt. Die durch Glaswolle in einen Tropftrichter filtrierte Grüne Lösung wurde auf 0°C abgekühlt und dann innerhalb von 30 min zu einer ebenfalls auf 0°C gekühlten Lösung von 5.2 g (16.3 mmol) 9-Bromanthracen in 60 ml Tetraglyme getropft. Das Reaktionsgemisch wurde 6 h bei 0°C und weitere 8 h bei Raumtemp, gerührt. Die jetzt zweiphasige Mischung wurde mit 300 g Eiswasser hydrolysiert. Nach Ausschütteln mit 300 ml CH₂Cl₂, Phasentrennung und Nachextraktion der wässerigen Phase mit dreimal je 100 ml CH_2Cl_2 wurde das CH_2Cl_2 im Rotationsverdampfer von den vereinigten organischen Phasen abgezogen. Die verbliebene Tetraglyme-Lösung wurde mit je 300 ml Wasser und Petrolether versetzt. Anschließend wurden die Phasen getrennt und die wässerige Schicht viermal mit je 100 ml Petrolether extrahiert. Der nach Abziehen des Lösungsmittels von den vereinigten organischen Phasen verbliebene Rückstand wurde in 50 ml CH₂Cl₂ (als Lösungsvermittler) gelöst; nach Zufügen von 50 ml n-Heptan wurde das CH₂Cl₂ im Rotationsverdampfer wieder abgezogen. Dabei fielen unumgesetztes 9-Bromanthracen sowie entstandenes Anthracen aus; sie wurden abfiltriert. Das Filtrat wurde noch zweimal in gleicher Weise behandelt und anschließend in der Kugelrohr-Apparatur destilliert; es wurde ein gelbes Öl isoliert, das im Kühlschrank kristallisierte. Ausb. 0.35 g (4%); Schmp. $14-16^{\circ}$ C. ¹H-NMR (CCl₄; 60 MHz): $\delta = 0.60-2.30$ (kompl. m der n-C₄H₉); 7.42-8.71 (kompl. m der 9H_{aromat}); gem. Int.-Verh. 27.7/8.3 (ber. 27/9). IR (Film zw. KBr-Platten; cm⁻¹): 1510 (Gerüstschw.); 1465, 1440 (δ_{s} [CH₂], δ_{as} [CH₃]); 1375 (δ_{s} [CH₃]); 780, 735 $(\gamma [C-H_{aromat}]); 690, 660, 610, 515$ (typisch für Sn(n-C₄H₉)₃). MS (EI; 70 eV): M^+ m/e = 468 (ber. 468 für ¹²⁰Sn). Analyse: Gef.: C, 66.62; H, 7.50. C₂₆H₃₆Sn (467.25) ber.: C, 66.83; H, 7.77%.

Tri(n-butyl)(9-phenanthrenyl)stannan (9-Tri(n-butyl)stannyl]phenanthren) (3b). Zu einer aus 9.50 g (36.9 mmol) 9-Bromphenanthren und 0.90 g (37.0 mmol) Magnesium in 70 ml absol. Tetrahydrofuran innerhalb von 4 h unter Rückfluß hergestellten Lösung von 9-Phenanthrenylmagnesiumbromid wurde langsam eine Lösung von 10.00 g (33.0 mmol) Tri(n-butyl)chlorstannan in 40 ml THF getropft; dann wurde das Gemisch zunächst 5 h unter Rückfluß und schließlich noch 15 h bei Raumtemp. gerührt. Das überschüssige Grignard-Reagenz wurde mit 200 g Eiswasser hydrolysiert und die wässerige Lösung dreimal mit je 100 ml CH₂Cl₂ extrahiert. Die über Na₂SO₄ getrockneten vereinigten organischen Phasen wurden im Rotationsverdampfer vom Lösungsmittel befreit; der Rückstand wurde im Vakuum rektifiziert. Ausb. 8.01 g, gelbes Öl; Sdp. 200 ° C/0.02 Torr; $n_D^{20} = 1.5997$. ¹H-NMR (CCl₄; 60 MHz): 0.6-2.0 (kompl. m; n-C₄H₉); 7.4-8.1 (kompl. m von 7H_{aromat}); 8.3-8.9 (m von H(1) und H(8)); gem. Int.-Verh. 27.1/6.8/2.1 (ber. 27/7/2). IR (Film): 1490 (Gerüstschw.); 1465, 1450 (δ_{as} [CH₃], δ_{s} [CH₂]); 1370 (δ_{s} [CH₃]); 760, 745, 720 (γ [C-H_{aromat}]); 690, 665, 600, 520 (typ. f. Sn(n-C₄H₉)₃). MS (EI): M^+ m/e = 468 (ber. 468 für ¹²⁰Sn). Analyse: Gef.: C, 66.95; H, 7.53. C₂₆H₃₆Sn (467.28) ber.: C, 66.83; H, 7.77%.

408

(5-Acenaphthenyl)tri(n-butyl)stannan (5-[Tri(n-butyl)stannyl]acenaphthen) (3c). Analog zu **3b** aus 7.81 g (33.5 mmol) 5-Bromacenaphthen und 0.82 g (33.7 mmol) Magnesium in 70 ml THF (3 h unter Rückfluß) und 9.40 g (28.9 mmol) Tri(nbutyl)chlorstannen in 40 ml THF (4 h unter Rückfluß, dann 22 h bei Raumtemp.). Ausb. 6.41 g (50%), gelbes Öl, Sdp. 170–176 ° C/0.10–0.03 Torr: $n_D^{20} = 1.5493$. ¹H-NMR (CDCl₃; 60 MHz): 0.7–2.6 (kompl. m; n-C₄H₉); 3.44 (m; CH₂–CH₂); 7.55–8.36 (m von 5H_{aromat}); gem. Int.-Verh. 27.5/3.8/4.7 (ber. 27/4/5). IR (Film): 1605 (Gerüstschw.); 1470, 1460 (δ_{as} [CH₃], δ_{s} [CH₂]); 1380 (δ_{s} [CH₃]); 840, 820, 770 (γ [C–H_{aromat}]); 695, 670, 600, 510 (typ. für Sn(n-C₄H₉)₃). MS (EI): M^+ m/e = 444 (ber. 444 für ¹²⁰Sn). Analyse: Gef.: C, 65.27; H, 8.33. C₂₄H₃₆Sn (443.26) ber.: C, 65.03; H, 8.19%.

Tri(*n*-butyl)(1-pyrenyl)stannan (1-[*Tri*(*n*-butyl)stannyl]pyren) (3d). Analog zu 3b aus 3.94 g (14.0 mmol) 1-Brompyren und 0.35 g (14.4 mmol) Magnesium in 60 ml THF (2.5 h unter Rückfluß) und 3.16 g (9.7 mmol) Tri(*n*-butyl)chlorstannan (4 h unter Rückfluß, 15 h bei Raumtemp.). Ausb. 1.71 g (36%), gelbes Öl, Sdp. 220 °C/0.01 Torr. ¹H-NMR (CDCl₃; 60 MHz): 0.7–2.3 (kompl. m: n-C₄H₉); 8.2–9.0 (m; 9H_{aromat}); gem. Int.-Verh. 26.2/9.8 (ber. 27/9). IR (Film): 1465, 1455 (δ_{ax} [CH₃], δ_{s} [CH₂]); 1375 (δ_{s} [CH₃]); 845, 840, 725 (γ [C–H_{aromat}]); 690, 615, 600, 520 (typ. für Sn(n-C₄H₉)₃). MS (EI): *M*⁺ *m/e* = 492 (ber. 492 für ¹²⁰Sn). Analyse: Gef.: C, 68.62; H, 7.36. C₂₈H₃₆Sn (492.30) ber.: C, 68.48; H, 7.39%.

(1,2,5,6- η^4 -Cycloocta-1,5-dien)bis(9-phenanthrenyl)platin(11) (5b). 0.55 g (1.55 mmol) [Pt(η^4 -COD)Cl₂] (4) [3] und 2.01 g (4.31 mmol) **3b** in 50 ml CH₂Cl₂ wurden 24 h unter Rückfluß erhitzt. (Der Fortschritt der Reaktion wurde dünnschicht-chromatographisch kontrolliert; nach 24 h war kein [Pt(COD)Cl₂] mehr nachweisbar.) Zu der auf Raumtemp. abgekühlten Lösung wurde die Hälfte ihres Volumens an Methanol gegeben, dann im Rotationsverdampfer das CH₂Cl₂ abgezogen und zur Vervollständigung der Kristallisation 24 h auf -20 °C gekühlt. Die isolierten Kristalle wurden zunächst mit 10 ml Methanol, dann mit 5 ml Ether gewaschen und schließlich im Vakuum getrocknet. Ausb. 0.98 g (96%, bezogen auf eingesetztes 4); bis 245 °C keine Phasenumwandlung, ab 245 °C Zersetzung. Infolge Schwerlöslichkeit kein ¹H-NMR-Spektrum. IR (KBr): 1610, 1565, 1520 (Gerüstschw.); 722, 760, 750, 745 (γ [C-H_{aromat}]); 620 (δ [Ring]). MS (Felddesorption): $M^+ m/e = 657$ (ber. 657 für ¹⁹⁵Pt). Analyse: Gef. C, 65.75; H, 4.81. C₃₆H₃₀Pt (657.71) ber.: C, 65.74; H, 4.60%.

Bis(5-acenaphthenyl)(1,2,5,6- η^4 -cycloocta-1,5-dien)platin(11) (5c).

Analog zu **5b** aus 0.45 g (1.21 mmol) [Pt(COD)Cl₂] (**4**) [3] und 1.69 g (3.81 mmol) **3c** in 30 ml CH₂Cl₂; 29 h unter Rückfluß. Ausb.: 0.65 g (82%), farblose Kristalle vom Schmp. 238° C (Zers.). ¹H-NMR (CDCl₃; 60 MHz; CAT 256 Scans): 2.7 (m; CH₂ aus COD); 3.2 (m; CH₂–CH₂ aus Acenaphthenyl); 5.3 (m mit ¹⁹⁵Pt,H-Satelliten, ²*J*[¹⁹⁵Pt,H] = 38 Hz; H_{olefin} aus COD); 6.7–7.7 (m von 8H_{aromat}); 7.9–8.6 (m; H_{aromat} peri-ständ. zu Pt). IR (CsI): 1600, 1580, 1490 (ν [C=C]. Gerüstschw.); 1460, 1430 (δa_s [CH₂], δ_s [CH₂]); 850, 840, 815, 775, 750 (γ [C–H_{aromat}], γ [C–H_{olefin}]). MS (FD): *M*⁺ *m/e* = 609 (ber. 609 für ¹⁹⁵Pt). Analyse: Gef. C, 60.36; H, 4.99. C₃₀H₃₀Pt · ¹/₂CHCl₂ (652.14) ber.: C, 59.86; H, 4.79%.

Bis(9-anthracenyl)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(11) (7a). Zunächst analog zu **5b** aus 0.28 g (0.78 mmol) [Pt(η^4 -NBD)Cl₂] (6) [4] und 0.80 g (2.35 mmol) **3a** in 40 ml CH₂Cl₂; 26 h bei Raumtemp., bis mit DC kein Reaktionsfortschritt mehr nachzuweisen war. Anschließend wurde dem Reaktionsgemisch das gleiche Volumen CH₃OH zugefügt und dann das CH₂Cl₂ im Rotationsverdampfer entfernt. Aus der verbliebenen Suspension in CH₃OH wurden nach 24 h bei – 20 °C und Trocknen im Vakuum 0.33 g (51%) 7a isoliert. Schmp. 216 °C (Zers.). Infolge Schwerlöslichkeit kein ¹H-NMR-Spektrum registrierbar. IR (KBr): 1618, 1565, 1490 (ν [C=C]; Gerüstschw.); 1310 (δ [C-H_{Brückenkopf}]); 875, 845, 836, 765, 745, 730 (γ [C-H_{aromat}], γ [C-H_{olefin}]). MS (FD): M^+ m/e = 641 (ber. 641 für ¹⁹⁵Pt). Analyse: Gef.: C, 61.89; H, 3.96. C₃₅H₂₆Pt · $\frac{1}{2}$ CH₂Cl₂ (684.14) ber.: C, 62.33; H, 3.98%.

(2,3,5,6- η^4 -Bicyclo[2.2.1]hepta-2,5-dien)bis(9-phenanthrenyl)platin(II) (7b). Analog zu 7a aus 0.39 g (1.09 mmol) [Pt(NBD)Cl₂] (6) [4] und 1.19 g (2.51 mmol) 3b in 30 ml CH₂Cl₂; 4 h bei Raumtemp.; Ausb. 0.64 g (92%); Schmp. 203°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz; CAT, 158 Scans): 1.8 (m; CH₂ aus NBD); 4.5 (m; H_{Brückenkopf} aus NBD); 5.8 (m; ²J[¹⁹⁵Pt,H] = 39 Hz; H_{olefin} aus NBD); 7.2–8.1 (m von 12H_{aromat}); 8.3–8.7 (m von 7H, 8H); 8.7–9.3 (m; 2 peri-H_{aromat}); gem. Int.-Verh. 2.2/1.9/4.3/11.9/ 3.8/1.9 (ber. 2/2/4/12/4/2). ¹³C{¹H}-NMR (CDCl₃): 51.0 (C_{Brückenkopf} aus NBD); Signal von CH₂ aus NBD nicht sicher identifizierbar; 97.1 (C_{olefin} aus NBD, keine ¹⁹⁵Pt, ¹³C-Satelliten identifizierbar); C_{aromat}: 109.0, 122.2, 122.7, 124.0, 125.1, 127.1, 129.7, 132.0, 133.0. IR (KBr): 1610, 1565, 1490 (ν [C=C], Gerüstschw.); 1315 (δ [C-H_{Brückenkopf}]); 770, 760, 750, 742, 720 (γ [C-H_{aromat}], γ [C-H_{olefin}]). MS (FD): $M^+ m/e = 641$ (ber. 641 für ¹⁹⁵Pt). Analyse: Gef.: C, 64.93; H, 4.08. C₃₅H₂₆Pt (641.67) ber.: C, 65.51; H, 4.08%.

Bis(5-acenaphthenyl)(2,3,5,6-η⁴-bicyclo[2.2.1]hepta-2,5-dien)platin(II) (7c). Analog zu **8a** aus 0.44 g (1.22 mmol) [Pt(NBD)Cl₂] (**6**) [4] und 1.33 g (3.00 mmol) 3c in 30 ml CH₂Cl₂; 6 h bei Raumtemp.; Ausb. 0.63 g (87%); Schmp. 167 °C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.62 (m; CH₂ aus NBD); 3.20 (m; CH₂-CH₂ aus Acenaphthenyl); 4.27 (m; H_{Brückenkopf} aus NBD); 5.63 (m mit ²J[¹⁹⁵Pt,H] = 40 Hz; H_{olefin} aus NBD); 6.50-7.60 (m von 8H_{aromat}); 7.90-8.30 (m von 2 peri-H_{aromat}); gem. Int.-Verh. 2.2/7.7/2.1/3.9/7.9/2.3 (ber. 2/8/2/4/8/2). ¹³C{¹H}-NMR (CDCl₃): 29.6, 30.4 (CH₂-CH₂ aus Acenaphthenyl); 50.7 (C_{Brückenkopf} aus NBD; ²J[¹⁹⁵Pt,¹³C] = 38.1 Hz); 75.1 (CH₂ aus NBD; ³J[¹⁹⁵Pt,¹³C] = 46.9 Hz); 97.1 (C_{olefin} aus NBD; ¹J[¹⁹⁵Pt,¹³C] = 43.6 Hz); C_{aromat}: 117.9, 119.9 (J[¹⁹⁵Pt,C] = 92.6 Hz); 125.6, 126.3 (J[¹⁹⁵Pt,C] = 76.3 Hz); 130.4 (J[¹⁹⁵Pt,C] = 49.1 Hz); 136.5, 140.0; 140.2, 146.2, 150.4 (C(5); ¹J[¹⁹⁵Pt,C] = 1157.2 Hz). IR (KBr): 1600, 1575, 1485 (ν[C=C], Gerüstschw.); 1430, 1400 (δ[CH₂]); 1310 (δ[C-H_{Brückenkopf}]); 835, 810, 770, 750 (γ[C-H_{aromat}]). MS (FD): M⁺m/e = 593 (ber. 593 für ¹⁹⁵Pt). Analyse: Gef.: C, 62.78; H, 4.21. C₃₁H₂₆Pt (593.63) ber.: C, 62.72; H, 4.41%.

(2,3,5,6-η⁴-Bicyclo[2.2.1]hepta-2,5-dien)bis(1-pyrenyl)platin(II) (7d). Analog zu 7a aus 0.38 g [Pt(NBD)Cl₂] (6) [4] und 1.28 g (2.60 mmol) 3d in 40 ml CH₂Cl₂; 20 h bei Raumtemp.; Ausb. 0.37 g (46%); Schmp. 161°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.30 (m; CH₂ aus NBD); 4.00 (m; H_{Brückenkopf} aus NBD); 5.48 (m mit ¹⁹⁵Pt,H-Satelliten; ²J[¹⁹⁵Pt,H] = 41 Hz; H_{olefin} aus NBD); 7.43-8.25 (m von 16H_{aromat}); 9.05 (d, flankiert von Pt,H-Satelliten; ³J[¹⁹⁵Pt,H] = 10 Hz; 2H_{aromat} *peri*-ständ. zu Pt); gem. Int.-Verh. 2.3/1.9/3.7/15.7/2.4 (ber. 2/2/4/16/2). ¹³C{H}-NMR (CDCl₃): 50.0 (C_{Brückenkopf} aus NBD; ²J[¹⁹⁵Pt,¹³C] = 36 Hz); 74.2 (CH₂ aus NBD); 95.5 (C_{olefin} aus NBD; ¹J[¹⁹⁵Pt, ¹³C] = 47.8 Hz); C_{aromat}: 112.0, 124.3, 124.9, 125.6, 127.4, 132.5, 133.9, 151.9 (C(1)). IR (KBr): 1620, 1585, 1475 (ν [C==C], Gerüstschw.); 1310 (δ [C-H_{Brückenkopf}]); 840, 820, 720 (γ [C-H_{aromat}], γ [C-H_{olefin}]); 785, 755 (ν [C-Cl] aus CH₂Cl₂; s. Analyse). MS (FD): M⁺m/e = 689 (ber. 689 für ¹⁹⁵Pt). Analyse: Gef.: C, 60.89; H, 3.49. $C_{39}H_{26}Pt \cdot CH_2Cl_2$ (766.63) ber.: C, 61.37; H, 3.42%.

cis-Bis(9-anthracenyl)bis(triphenylphosphan)platin(II) (8a). 0.17 g (0.26 mmol) 7a und 1.30 g (5.00 mmol) P(C₆H₅)₃ wurden unter Argon-Schutzgas in 30 ml CH₂Cl₂ 117 h bei Raumtemp. intensiv gerührt. Dann wurde das Lösungsmittel im Rotationsverdampfer zunächst vollständig abgezogen, der Rückstand in dem gerade erforderlichen Volumen CH₂Cl₂ wieder gelöst und diese Lösung mit 20 ml Methanol überschichtet. Die nach 24 h bei – 20 °C gebildeten Kristalle wurden isoliert und im Vakuum getrocknet. Ausb. 0.20 g (93%); Schmp. 192 °C (Zers.). ¹H-NMR (CDCl₃; 60 MHz; CAT, 16 Scans): 6.7–7.7 (kompl. m von 44H_{aromat}); 9.2–9.5 (m von 4 *peri*-H_{aromat}); gem. Int.-Verh. 44.2/3.8 (ber. 44/4). ³¹P-NMR (Bruker MSL 300; CDCl₃; H₃PO₄ extern. Stand.): $\delta = 12.80$; ¹J[¹⁹⁵Pt,³¹P] = 1745 Hz; *cis*-Konfiguration [18,19]. IR (KBr): 1435, 1095, 1000 (typisch für P(C₆H₅)₃); 865, 725 (γ [C-H_{aromat}]); 695 (δ [Ring]; P(C₆H₅)₃); 538, 525, 515, 490 (*cis*-Konfiguration [20–26]). MS (FD): *M*⁺ *m*/*e* = 1073 (1073 für ¹⁹⁵Pt). Analyse: Gef.: C, 67.74; H, 4.09. C₆₄H₄₈P₂Pt · 2CH₂Cl₂ (1173.18) ber.: C, 67.73; H, 4.21%.

cis-Bis(9-*phenanthrenyl*)*bis*(*triphenylphosphan*)*platin*(*II*) (*8b*). Analog zu **8a** aus 0.24 g (0.37 mmol) **7b** und 0.31 g (1.17 mmol) $P(C_6H_5)_3$ in 40 ml CH_2Cl_2 ; 4 h Raumtemp.; Ausb. 0.30 g (74%); Schmp. 155°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 6.6–7.9 (kompl. m von 42H_{aromat}); 8.0–8.4 (m von 1H und 8H am 9-Phenanthrenyl); 9.2–9.6 (m von 2H_{aromat} *peri*-ständ. zu Pt); gem. Int.-Verh. 41.5/ 4.4/2.1 (ber. 44/4/2). ³¹P-NMR (JEOL FX 90; CDCl₃; H₃PO₄ extern. Stand.): $\delta = 15.28$, 15.75 (*E*- und *Z*-Konformation); ¹*J*[¹⁹⁵Pt,³¹P] = 1807 Hz, gleich für *E* und *Z*; *cis*-Konfiguration [18,19]. IR (KBr): 1610, 1560 (Gerüstschw.); 1435, 1100, 1000 (typ. für P(C₆H₅)₃); 875, 740, 725 (γ [C–H_{aromat}]); 695 (δ [Ring]); 540, 530, 521, 502 (*cis*-Konfiguration [20–26]). MS (FD): M^+ m/e = 1074 (ber. 1074 für ¹⁹⁵Pt). Analyse: Gef.: C, 71.78; H, 4.03. C₆₄H₄₈P₂Pt (1074.11) ber.: C, 71.51; H, 4.50%.

cis-Bis(5-*acenaphthenyl*)*bis*(*triphenylphosphan*)*platin*(*II*) (*8c*). Analog zu **8a** aus 0.26 g (0.37 mmol) 7c und 0.54 g (2.06 mmol) P(C₆H₅)₃ in 40 ml CH₂Cl₂; 40 h bei Raumtemp.; **8c** wurde außerdem aus 2.40 g (10.10 mmol) 5-Bromacenaphthen und 6.30 ml (10.10 mmol) 1.6 *M* n-Butyllithium/Hexan in 40 ml THF (3 h. Raumtemp.) und 0.78 g (0.99 mmol) *cis*-{Pt[P[C₆H₅)₃]₂Cl₂} [27] (2.5 h bei Raumtemp.) darge-stellt. Ausb. 0.61 g (59%, bezogen auf eingesetztes {Pt[P(C₆H₅)₃]₂Cl₂}; Schmp. 140 °C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 3.0 (m von CH₂-CH₂); 6.4-7.7 (m von 38H_{aromat}); 8.2-8.6 (m von 2 *peri*-H_{aromat}). 300 MHz: 2.89-2.96 (m); 6.49-7.50 (m); 8.36-8.39 (m); Zuordnung wie oben; gem. Int.-Verh. 7.5/37.8/1.77 (ber. 8/38/2). ³¹P-NMR (JEOL FX 90Q; CDCl₃; H₃PO₄ extern. Stand.): $\delta = 14.15$, 15.88 (*E* + *Z*); ¹*J*[¹⁹⁵Pt,³¹P] = 1768 Hz (für *E* und *Z* gleich), *cis*-Konfiguration [18,19]. IR (KBr): 1606, 1590, 1570 (Gerüstschw.); 1435, 1100, 1000 (typ. für P(C₆H₅)₃); 835, 810, 770, 745 (γ [C-H_{aromat}]); 540, 530, 520, 500 (*cis*-Konfiguration [20-26]). MS (FD): *M*⁺ *m*/*e* = 1025 (ber. 1025 für ¹⁹⁵Pt). Analyse: Gef.: C, 70.54; H, 4.73. C₆₀H₄₈P₂Pt (1026.07) ber.: C, 70.24; H, 4.72%.

cis-Bis(1-pyrenyl)bis(triphenylphosphan)platin(II) (8d). Analog zu 8a aus 0.13 g (0.19 mmol) 7d und 0.14 g (0.53 mmol) $P(C_6H_5)_3$ in 30 ml CH_2Cl_2 ; 3 h bei 0°C, dann 2.5 h bei Raumtemp.; Ausb. 0.13 g (61%); keine Phasenumwandlung bis 300°C, langsame Zersetzung ab 150°C. ¹H-NMR (CDCl₃; 60 MHz; CAT, 64 Scans): 6.5–8.7 (kompl. m von 66H_{aromat}); 9.1–9.5 (m von 2H_{aromat} peri-ständ. zu

Pt); gem. Int.-Verh. 65.9/2.1 (ber. 66/2). ³¹P-NMR (Bruker AC 80; CDC1₃; H₃PO₄ extern. Stand.): $\delta = 16.74$, 17.31 (E + Z Konformation spektroskopisch unterschiedbar, infolge zu geringer Lebensdauer jedoch nicht getrennt isolierbar; die isolierte kristalline Verbindung besitzt wahrschinlich die (stabilere) *E*-Konformation); ¹J[¹⁹⁵Pt,³¹P] = 1795 Hz, einheitlich für *E* und *Z*; *cis*-Konfiguration [18,19]. IR (KBr): 1585 (Gerüstschw.); 1440, 1100, 1000 (typ. für P(C₆H₅)₃); 840, 820, 750, 720 (γ [C-H_{aromat}]); 695 (δ [Ring]); 542, 530, 520, 500 (*cis*-Konfiguration [20-26]). MS (FD): $M^+ m/e = 1121$ (ber. 1121 für ¹⁹⁵Pt). Analyse: Gef.: C, 73.01; H, 4.47. C₄₈H₄₈P₂Pt (1122.16) ber.: C, 72.78; H, 4.31%.

cis-(9-Anthracenyl)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)chloroplatin(II) (9a). 0.46 g (1.28 mmol) [Pt(NBD)Cl₂] (6) [4] und 0.57 g (1.67 mmol) 3a wurden in 65 ml CH₂Cl₂ 7 h bei 0° C intensiv gerührt. Nach vorheriger Zugabe von 20 ml n-Heptan wurde das gesamte Lösungsmittel im Rotationsverdampfer abgezogen. Der verbliebene kristalline Rückstand wurde in einer 80 cm Säule (2 cm inn. D.) in CH₂Cl₂ an Kieselgel (mit 10% H₂O) chromatographiert. Ausb. 0.58 g (91%), gelbe Kristalle vom Schmp. 212° C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.62 (m; CH₂ aus NBD); 4.05–4.45 (m; H_{Brückenkopf} aus NBD); 4.75 (m mit ¹⁹⁵Pt,H-Satelliten; ²J[¹⁹⁵Pt,H] = 76 Hz; 2H_{olefin} zu Cl); 6.05 (m mit ¹⁹⁵Pt,H-Satelliten; ²J[¹⁹⁵Pt,H] = 32 Hz; 2H_{olefin} trans zu 9-Anthracenyl); 7.20–8.16 (m von 7H_{aromat}); 8.65–9.05 (m; 2 peri-H_{aromat}); gem. Int. Verh. 1.9/3.9/1.7/7.3/2.3 (ber. 2/(2 + 2)/2/7/2). IR (KBr): 1615, 1530, 1500 (ν [C=C], Gerüstschw.); 1435 (δ [CH₂]); 1305 (δ [C-H_{Brückenkopf}]); 805, 780, 760, 745, 735 (ν [C-H_{aromat}]); 315 (ν [Pt-Cl]). MS (EI): $M^+ m/e = 499$ (ber. 499 für ¹⁹⁵Pt, ³⁵Cl). Analyse: Gef.: C, 50.57; H, 3.37. C₂₁H₁₇ClPt (499.90) ber.: C, 50.46; H, 3.42%.

Dank

Dem Verband der Chemischen Industrie – Fonds der Chemischen Industrie – danken wir für großzügige Förderung. Außerdem wurde die Arbeit durch Mittel des landes Baden-Württemberg (Forschungsschwerpunkt 44) gefördert.

Literatur

- 1 C. Weisemann und H.-A. Brune, J. Organomet. Chem., 362 (1989) 63.
- 2 C. Weisemann, G. Schmidtberg und H.-A. Brune, J. Organomet. Chem., 361 (1989) 299.
- 3 H.C. Clark und L.E. Manzer, J. Organomet. Chem., 59 (1973) 411.
- 4 D.W. Wertz und M.A. Moseley, Spectrochim. Acta, 36 A (1980) 467.
- 5 J. Ertl, T. Debaerdemaeker und H.-A. Brune, Chem. Ber., 115 (1982) 3860.
- 6 H.-A. Brune, M. Wiege und T. Debaerdemaeker, Z. Naturforsch. B, 39 (1984) 359.
- 7 H.-A. Brune, M. Wiege und T. Debaerdemaeker, Z. Naturforsch. B, 39 (1984) 907.
- 8 T. Debaerdemaeker, B. Stapp und H.-A. Brune, Acta Cryst. C, 43 (1987) 473.
- 9 T. Debaerdemaeker, R. Baumgärtner und H.-A. Brune, Z. Kristallogr., 180 (1987) 171.
- 10 R. Baumgärtner, H.-A. Brune und T. Debaerdemaeker, Acta Cryst., (1988) im Druck.
- 11 T. Debaerdemaeker, K. Berhalter, C. Weisemann und H.-A. Brune, Acta Cryst. C, 43 (1987) 1253.
- 12 T. Debaerdemaeker, C. Weisemann und H.-A. Brune, Acta Cryst. C, 43 (1987) 432.
- 13 R. Baumgärtner, G. Laube, G. Schmidtberg und H.-A. Brune, J. Organomet. Chem., 332 (1987) 221.
- 14 R. Baumgärtner und H.-A. Brune, J. Organomet. Chem., 332 (1987) 379.
- 15 R. Baumgärtner, G. Schmidtberg und H.-A. Brune, J. Organomet. Chem., 345 (1988) 221.
- 16 H.-A. Brune, W. Schäfer, K.-H. Spohn und C. Weisemann, J. Organomet. Chem., 316 (1986) 367.
- 17 M. Bulpitt, W. Kitching, W. Adcock und D. Doddrell, J. Organomet. Chem., 116 (1976) 161.
- 18 H.-A. Brune, J. Unsin, H.G. Alt, G. Schmidtberg und K.-H. Spohn, Chem. Ber., 117 (1984) 1606.

- 19 H.G. Alt, W.-D. Müller, J. Unsin und H.-A. Brune, J. Organomet. Chem., 307 (1986) 21.
- 20 S.H. Mastin, Inorg. Chem., 13 (1974) 1003.
- 21 H.-A. Brune und J. Ertl, Liebigs Ann. Chem., (1980) 928.
- 22 H.-A. Brune, J. Ertl, D. Grafl und G. Schmidtberg, Chem. Ber., 115 (1982) 1141.
- 23 J. Ertl, D. Grafl und H.-A. Brune, Z. Naturforsch. B, 37 (1982) 1982.
- 24 J. Ertl, T. Debaerdemaeker und H.-A. Brune, Chem. Ber., 115 (1982) 3860.
- 25 U. Bayer und H.-A. Brune, Z. Naturforsch. B, 38 (1983) 226.
- 26 U. Bayer und H.-A. Brune, Z. Naturforsch. B, 38 (1983) 621.
- 27 K.A. Jensen, Z. Anorg. Allg. Chem., 229 (1936) 298.